Universal Approximation Using Radial-Basis-Function Networks

نویسندگان

  • Jooyoung Park
  • Irwin W. Sandberg
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation

In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...

متن کامل

Neural Networks for Pattern Classification and Universal Approximation

LIAO, YI. Neural Networks for Pattern Classification and Universal Approximation (Under the direction of Dr. Shu-Cherng Fang and Dr. Henry L. W. Nuttle). This dissertation studies neural networks for pattern classification and universal approximation. The objective is to develop a new neural network model for pattern classification, and relax the conditions for Radial-Basis Function networks to...

متن کامل

A numerical solution of a Kawahara equation by using Multiquadric radial basis function

In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.

متن کامل

Pii: S0893-6080(97)00097-x

In this paper, we present a review of some recent works on approximation by feedforward neural networks. A particular emphasis is placed on the computational aspects of the problem, i.e. we discuss the possibility of realizing a feedforward neural network which achieves a prescribed degree of accuracy of approximation, and the determination of the number of hidden layer neurons required to achi...

متن کامل

Multivariable Approximation by Convolutional Kernel Networks

Computational units induced by convolutional kernels together with biologically inspired perceptrons belong to the most widespread types of units used in neurocomputing. Radial convolutional kernels with varying widths form RBF (radial-basis-function) networks and these kernels with fixed widths are used in the SVM (support vector machine) algorithm. We investigate suitability of various convol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural Computation

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1991